The cyclopropene radical cation: rovibrational level structure at low energies from high-resolution photoelectron spectra.
نویسندگان
چکیده
The cyclopropene radical cation (c-C3H₄⁺) is an important but poorly characterized three-membered-ring hydrocarbon. We report on a measurement of the high-resolution photoelectron and photoionization spectra of cyclopropene and several deuterated isotopomers, from which we have determined the rovibrational energy level structure of the X⁺ (2)B2 ground electronic state of c-C3H₄⁺ at low energies for the first time. The synthesis of the partially deuterated isotopomers always resulted in mixtures of several isotopomers, differing in their number of D atoms and in the location of these atoms, so that the photoelectron spectra of deuterated samples are superpositions of the spectra of several isotopomers. The rotationally resolved spectra indicate a C(2v)-symmetric R0 structure for the ground electronic state of c-C3H₄⁺. Two vibrational modes of c-C3H₄⁺ are found to have vibrational wave numbers below 300 cm(-1), which is surprising for such a small cyclic hydrocarbon. The analysis of the isotopic shifts of the vibrational levels enabled the assignment of the lowest-frequency mode (fundamental wave number of ≈110 cm(-1) in c-C3H₄⁺) to the CH2 torsional mode (ν₈⁺, A2 symmetry) and of the second-lowest-frequency mode (≈210 cm(-1) in c-C3H₄⁺) to a mode combining a CH out-of-plane with a CH2 rocking motion (ν₁₅⁺, B2 symmetry). The potential energy along the CH2 torsional coordinate is flat near the equilibrium structure and leads to a pronounced anharmonicity.
منابع مشابه
Slow photoelectron velocity-map imaging spectroscopy of the C9H7 (indenyl) and C13H9 (fluorenyl) anions.
High-resolution photoelectron spectra are reported of the cryogenically cooled indenyl and fluorenyl anions, C9H7(-) and C13H9(-), obtained with slow electron velocity-map imaging. The spectra show well-resolved transitions to the neutral ground states, giving electron affinities of 1.8019(6) eV for indenyl and 1.8751(3) eV for fluorenyl. Numerous vibrations are observed and assigned for the fi...
متن کاملProbing the electronic properties of dichromium oxide clusters Cr2On- (n=1-7) using photoelectron spectroscopy.
In an effort to elucidate the variation of the electronic structure as a function of oxidation and composition, we investigated an extensive series of dichromium oxide clusters, Cr2On- (n=1-7), using photoelectron spectroscopy (PES). Well-resolved PES spectra were obtained at several photon energies. While low photon energy spectra yielded much better spectral resolution, high photon energy dat...
متن کاملProbing the electronic and vibrational structure of Au2Al2(-) and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging.
The electronic and vibrational structures of Au2Al2(-) and Au2Al2 have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au2Al2. Vibrationally resolved PE sp...
متن کاملHigh resolution and low-temperature photoelectron spectroscopy of an oxygen-linked fullerene dimer dianion: C(120)O(2-).
C(120)O comprises two C(60) cages linked by a furan ring and is formed by reactions of C(60)O and C(60). We have produced doubly charged anions of this fullerene dimer (C(120)O(2-)) and studied its electronic structure and stability using photoelectron spectroscopy and theoretical calculations. High resolution and vibrationally resolved photoelectron spectra were obtained at 70 K and at several...
متن کاملSurface structure of organoclays as examined by X-ray photoelectron spectroscopy and molecular dynamics simulations
Organoclays are sorbent materials prepared from clays by exchanging inorganic with organic cations. Their properties depend on the loading and conformational structure of the organic cations, but little information is available about the surface structures of organoclays. In this work, X-ray photoelectron spectroscopy (XPS) and classical molecular dynamics (MD) simulations are combined to chara...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 141 6 شماره
صفحات -
تاریخ انتشار 2014